

Richard-Wagner-Str. 1, 38106 Braunschweig

ESABASE2/Debris Impact Analysis Tool

ESA/ESTEC Contract 16852/02/NL/JA Final Presentation 15 March 2006

eta_max space GmbH

Richard-Wagner-Str. 1 D-38106 Braunschweig

Tel: +49-531-3802-400

Fax: +49-531-3804-401

info@etamax.de www.etamax.de

eta_max eta max space Richar

Overview

- Study Organisation
 - Study facts
 - Scope of the study
- ESABASE2 Overview
 - > Concept
 - Components
 - Handling
 - Available debris models
- Summary & Conclusions,
 Outlook & Future Perspectives

Study Organisation

Study Facts

Richard-Wagner-Str. 1, 38106 Braunschweig

Title: PC Version of Debris Impact Analysis Tool

• Duration: 2003-01-03 – 2006-03-31

Initial Study + CCN to include new debris models

ESA Technical Officer: Gerhard Drolshagen

Study Team:

Prime Contractor: eta_max space

eta_max

H. Sdunnus,

K.D. Bunte,

A. Langwost,

D. Gunia,

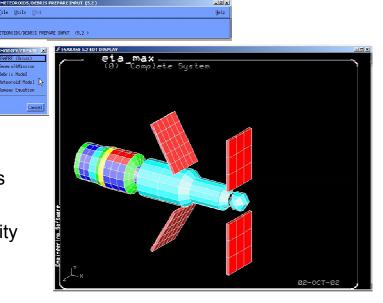
K. Ruhl

(S. Hauptmann)

Scope of the Study

Richard-Wagner-Str. 1, 38106 Braunschweig

Motivation

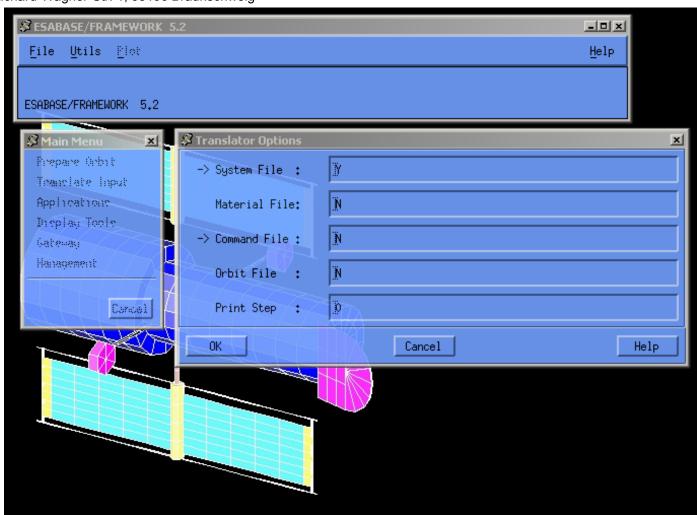

- Ageing Space Environment Analysis Tools
 - Platform dependence
 - Cumbersome user interfaces
 - Restricted data models
 - Undefined or non-existent interfaces to external tools
 - Unsatisfactory pre- and post-processing capabilities
 - Serious constraints of their acceptance and availability (ESABASE;..)

ESA Study

- "Porting of the existing ESABASE/Debris Application to PC platform"
- Usage of off-the-shelf (OTS) tools and Open Source software
- Provision of Open Interfaces (STEP)

Result

ESABASE2 = Open Frontier framework + ESABASE/Debris solver



ESABASE2 Overview

Introduction

eta_max space

ESABASE2 Concept

Richard-Wagner-Str. 1, 38106 Braunschweig

Pre-Processor

Solver

Post Processor

User Input Acquisition

- Satellite Model
 - Geometry
 - Kinematics
 - Pointing
- Mission
 - Orbit
 - Duration
 - Manoeuvres
- Solver Parameters
 - Debris
 - Other

Physics file

Geometry

file

Mission

file

Application of Models

- · "General Services"
 - Orbit Propagation
 - Meshing
 - Ray Tracing
- Physical Model(s)
 - Debris & Meteoroids
 - Radiation
 - ...
 - ..

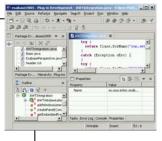
Analysis of Results

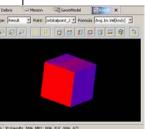
- Results Visualisation
 - 2D Charts
 - 3D Chart
 - Mapping to geometry
 - File viewing
- Post-Processing
- Report Generation
 - Export to office tools

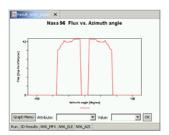
ESABASE2 Components

eta max space

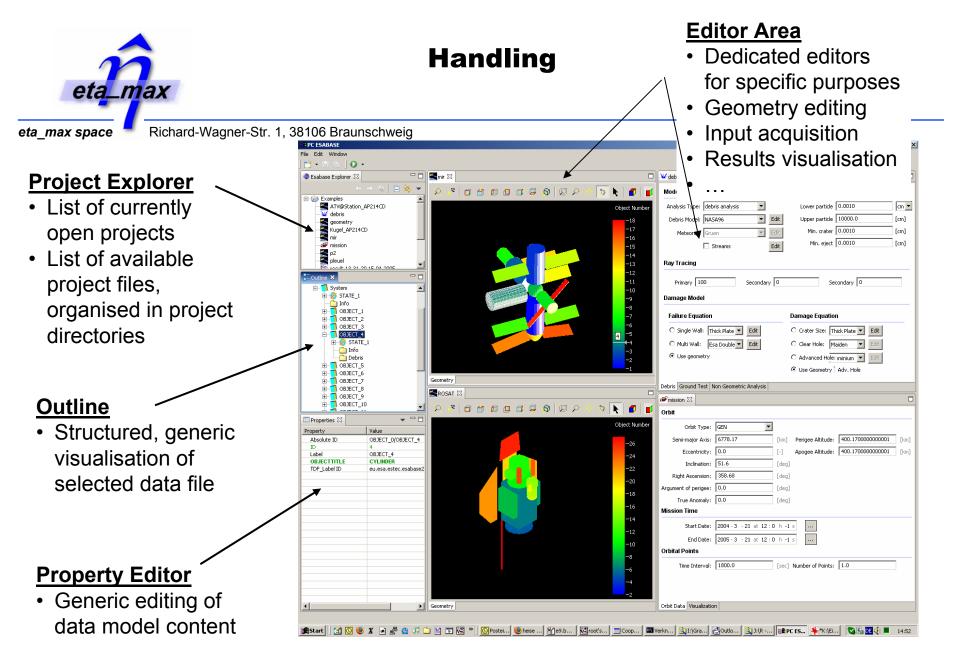
Richard-Wagner-Str. 1, 38106 Braunschweig


GUI


- → Eclipse (CPL)
- full availability to the features of the Java Standard Widget Toolkit (SWT)
 - Window management
 - File handling
- > Offers a "Plugin Model"
- Model Builder/Viewer


- → Open Cascade (GPL like license)
- Open Source CAD library
- > available on PC and other platforms (Windows, Linux, Solaris)
- > Interfaces: STEP (AP 203 and 214;[209]), IGES and others
- Visualisation

- → VisAD (LGPL)
- Java component library for interactive and collaborative visualisation and analysis of numerical data
- Reporting

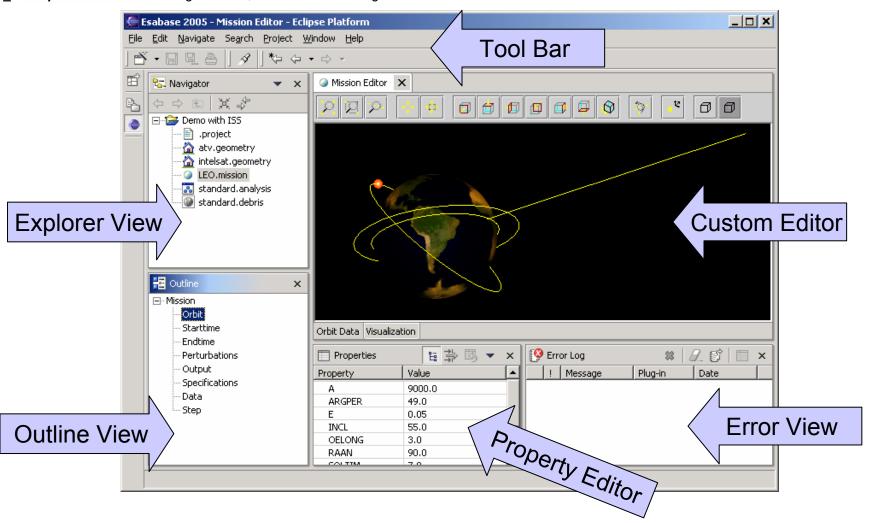

- → JFreeReport (LGPL)
- JFreeReport is used to display formatted data tables and analysis reports



Available Models

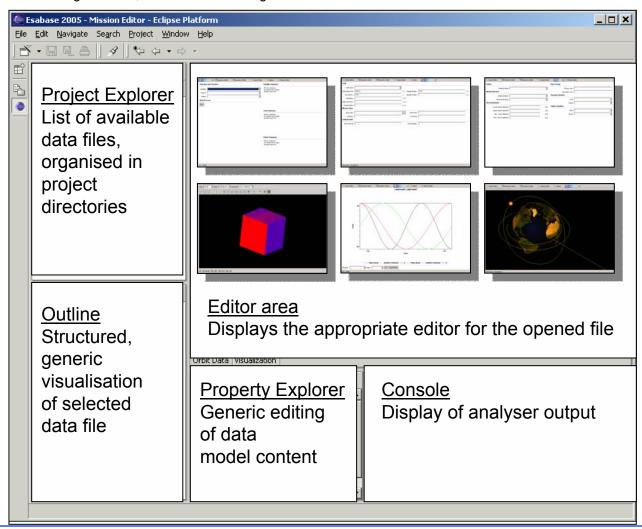
Debris Models	
	NASA 90 NASA 96 MASTER 2001 ORDEM 2000
Meteoroid Models	
Sporadics	Grün Cour-Palais Divine-Staubach
Streams	Jenniskens
Advanced (directional effects of the sporadic component)	Apex Enhancement α, β separation Interstellar Sources
Velocity Distribution	HRMP (also altitude dependant) Kessler

Secondary Ejecta	yes
Design Equations	
Single Wall Multiple Wall	 Commonly used equations are selectable Generic equations with user-editable parameters are available.
Damage Equations	
Craterisation Clear Hole Advanced Hole	 Commonly used equations are selectable Generic equations with user-editable parameters are available.



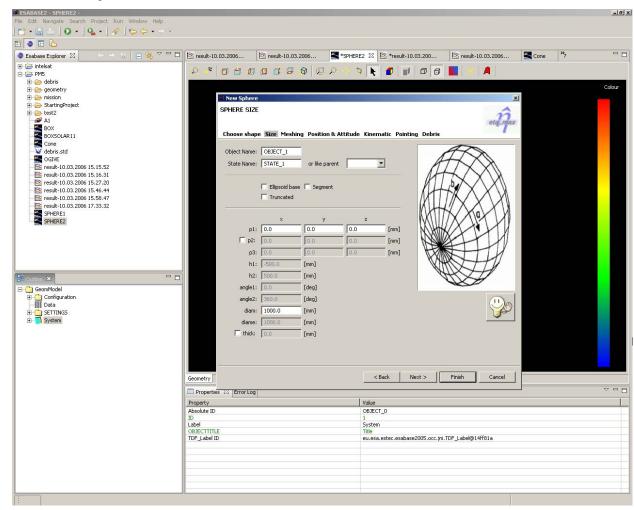
Hands-on Presentation

Overview GUI


eta_max space Richard-Wagner-Str. 1, 38106 Braunschweig

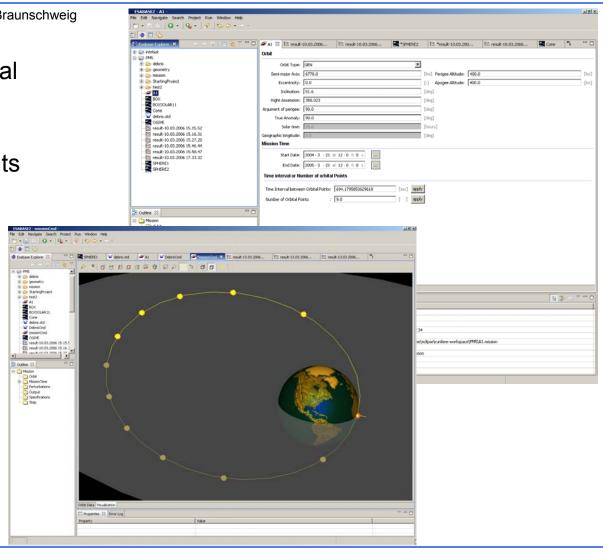
eta_max

Overview GUI II


eta max space

Geometry Editor

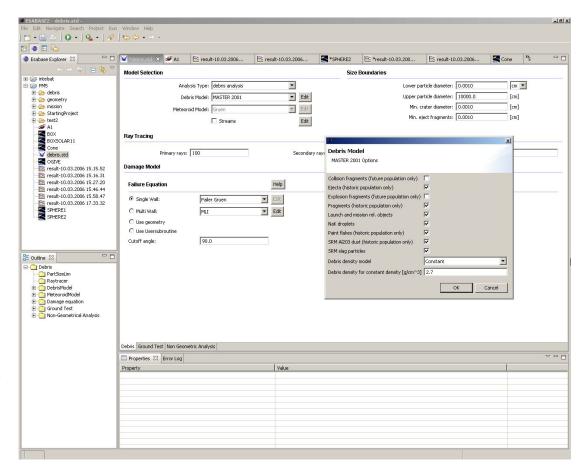
- Graphical geometry-builder
- Possible importformats:
 - > STEP
 - AP203
 - AP214
 - > BAS
- Predefined sample shapes (e.g. box, sphere, cone,...)
- Hierarchical relationship between the objects


Mission Editor

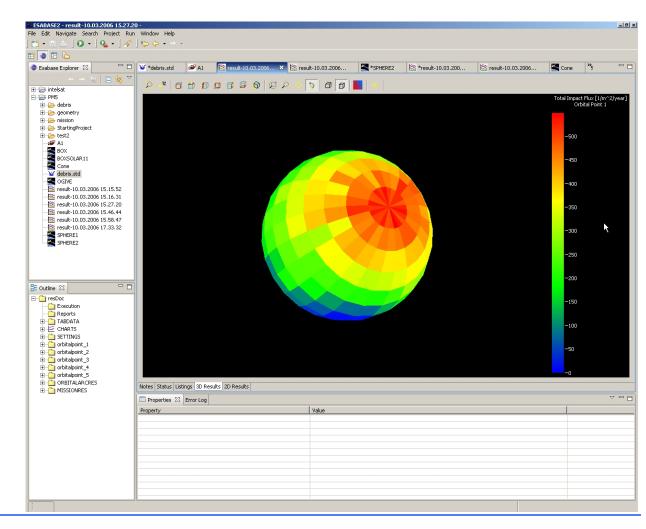
Richard-Wagner-Str. 1, 38106 Braunschweig

 Input via classical orbital elements or apogee / perigee

 Input of no. orbital points or time between the orbital points


- Orbit visualisation including orbital point visualisation
- Pre-defined Sunsynchronous and geostationary orbits

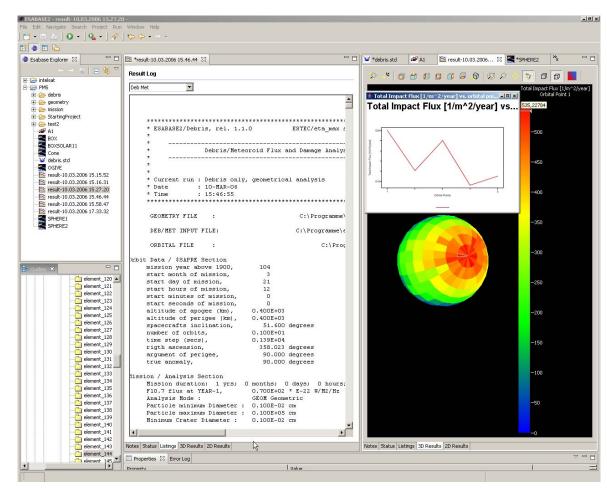
Debris Editor


- Possibility to select between different debris/meteoroid models and different damage/failure equations
- Ground-test option to verify damage/failure equations
- Non-geometrical analysis for all debris/meteoroid models available
- Possibility to implement a user defined damageequation

Result Editor I

- 3-D colour overlay on the geometry for different types of results (e.g. flux, impact velocity, impact angle,...)
- A legend assigns element colours to result values
- Possibility to display coordinates and pointing information

Result Editor II


- Different possibilities to visualise results
- 2-D Charts
- Reports
- Export options for graphs and 3-D images

Result Editor III

- 2-D Charts available for the result of each single element (vs. orbital points)
- Listing-files for
 - > Orbit
 - > Kinematic
 - Debris/meteoroid flux analysis
- Results for each orbital point, for an orbital arc and for the mission

Summary & Conclusions Outlook & Future Perspectives

Maintenance and Distribution

eta_max space

Richard-Wagner-Str. 1, 38106 Braunschweig

Distribution

- Copies of the software are available from 01-04-2006
- Interest may be expressed via lists circulated at FP or via website http://www.esabase.net/
- Initial distribution by CD (code plus documents), updates via web http://www.esabase.net/ or CD
- New releases plus release notes will be regularly (every 3 months) issued on the web

Licensing

- Source code of shell (Open Frontier) is distributed under ESA Open Source License
- Source code of debris module only on request, object code will be distributed
- Maintenance and support contracts are offered by eta_max space
- Class A contracts: Main contractors,
 - Automatic updates
 - Priority user support at reasonable best effort level
 - Yearly Fee: 5K/yr
- Class B contracts: SME's and Space Agencies
 - Automatic updates
 - User support at reasonable best effort level
 - Yearly Fee: 2.5 K/yr
- Class C contracts: students, universities, research Labs, private persons
 - Basic support, no automatic updates
 - For internal use only, tool not to be used for work for customers which themselves would require a license
 - Publication of results only upon acceptance
 - No fee
- Specific customer requests will be handled on a case-by-case base.

Summary and Conclusions

Richard-Wagner-Str. 1, 38106 Braunschweig

 The Debris module of the former ESABASE application has been integrated into Open Frontier, an up-to-date PC-based platform based on Open Source components.

ESABASE2

- > is available for PC platforms,
- provides an ergonomic framework for
 - user input acquisition,
 - post processing,
 - result visualisation,
- offers considerable performance enhancements, mainly due to a revised ray tracing algorithm,
- offers an interface to external CAD tools via STEP (STEP SPE in preparation),
- contains new debris modules (e.g. ORDEM 2K),
- will be distributed and maintained by eta_max space from 01-04-2006 onwards.

Outlook and Future Perspectives

- ESABASE2
 - > Implementation of other, 'classic' ESABASE components
 - Atomic oxygen
 - Radiation
 - **–** ...
 - > Further enhancement of the Debris application
 - Vulnerability of internal components
 - New models (e.g. MASTER 2005)
 - > Further enhancement of platform
 - Optimisation module
- Open Frontier Platform
 - May serve as platform also for other solvers, e.g.
 - Radiation
 - Thermal
 - Offers particular advantages due to the fact that different solvers may work on exactly the same geometry